
Proposal for Modeling Brazilian Portuguese

with Adaptive Grammars

Djalma Padovani, João José Neto

University of São Paulo,

School of Engineering of the University of São Paulo,

Brazil

djalma.padovani@usp.br, joao.jose@poli.usp.br

Abstract. Natural Language Processing uses different techniques for identifying

elements of the language and the syntactic and semantic roles they carry out in

the text under analysis. Traditionally, NLP systems are built with modules that

divide the text, identify its elements, verify whether the syntactic trees are in

accordance with grammar rules, and apply specific formalisms to validate the

semantics. However, it is noticed that there are few formalisms that represent

semantics in a syntactic way and such formalisms are either very complex or

incomplete. Adaptive Grammars is a formalism in which a grammar can modify

itself based on the character chain parsing and the application of rules associated

to the context. It brings several advantages over similar techniques because it

allows the representation of both syntactic and semantics together in a single

model. This work presents a method for modeling Natural Languages using

Adaptive Grammars and illustrates the proposal with an application to

Brazilian Portuguese.

Keywords: Computational, terminology, formalisms and knowledge

representation ·linguistics, grammars, automata, natural, language processing.

1 Introduction

Natural Language Processing uses several techniques for identifying elements of the

language and the syntactic and semantic roles they carry out in the text in which they

are inserted. Traditionally, NLP systems are built with modules that divide the text,

identify its elements, verify whether the syntactic trees are in accordance with grammar

rules, and apply specific formalisms to validate the semantics. However, it is noticed

that there are few formalisms that represent semantics in a syntactic way and such

formalisms are either very complex or incomplete. Adaptive technology presents a very

practical formalism with great potential for application in all stages of natural language

processing, including semantic validation. Adaptive Grammars is a formalism proposed

by Iwai [1] in her doctoral thesis, in which grammatical rules are created dynamically

from the processing of the input chain and from information about the context in which

they are found.

77

ISSN 1870-4069

Research in Computing Science 141, 2017pp. 77–95; rec. 2017-02-01; acc. 2017-04-12

mailto:djalma.padovani@usp.br

That formalism presents several advantages over similar techniques, because with a

single model it is possible to represent both syntactic and semantic characteristics. Iwai

also demonstrates the computational equivalence between adaptive grammars and

adaptive automata, which allows phrases of the language generated by an adaptive

grammar to be recognized by adaptive automata. This work presents a method for

modeling Natural Languages by using Adaptive Grammars and illustrates the proposal

with an application to Brazilian Portuguese.

 Concepts and Related Works

Natural Language Processing requires the development of programs that are capable of

determining and interpreting the sentence structure at many levels of detail. Natural

languages exhibit intricate structural behavior since the particular cases to be

considered are profuse. Since natural languages are never formally designed, their

syntactic rules are neither simple nor obvious and thus their computational processing

is complex. Many methods are employed in NLP systems, adopting different

paradigms, such as exact, approximate, pre-defined or interactive, intelligent or

algorithmic methods [2].

Regardless of the method used, natural language processing involves the operations

of lexical-morphological analysis, syntactic analysis, semantic analysis and pragmatic

analysis [3]. The lexical-morphological analysis seeks to assign a morphological

classification to each sentence word from the information stored in the lexicon [4]. The

lexicon or dictionary is the data structure containing the lexical items and information

corresponding to these items. Among the information associated with lexical items are

the grammatical category of the item, such as noun, verb and adjective, and

morphosyntactic-semantic values such as gender, number, grade, person, time, mode,

verbal or nominal regency.

In the parsing step, the parser checks whether a sequence of words is a valid sentence

in the language, recognizing it or not. The syntax analyzer makes use of a lexicon and

a grammar that defines the rules of combining the items in sentence formation. In cases

where there is a need to interpret the meaning of a text, the lexical-morphological

analysis and the syntactic analysis are not enough, and it is necessary to perform a new

type of operation, called semantic analysis [4]. The semantic analysis looks for mapping

the syntactic structure to the domain of the application, making the structure gain

a meaning.

The mapping is done by identifying the semantic properties of the lexicon and the

semantic relationship between the items that compose it [5]. The pragmatic analysis

seeks to reinterpret the structure that represents what was said to determine what was

really meant. This category includes anaphoric relations, relations, determinations,

focuses or themes, deictics and ellipses [6].

Adaptive grammar model is defined in [7] as a grammatical formalism that allows

sets of production rules to be explicitly manipulated within a grammar. Types of

manipulation include rule addition, deletion, and modification. The first description of

grammar adaptivity (though not under that name) in the literature is generally [8, 9, 10]

taken to be in a paper by Alfonso Caracciolo di Forino published in 1963 [11]. The next

generally accepted reference to an adaptive formalism (extensible context-free

grammars) came from Wegbreit in 1970 [12] in the study of extensible programming

78

Djalma Padovani, João José Neto

Research in Computing Science 141, 2017 ISSN 1870-4069

languages, followed by the dynamic syntax of Hanford and Jones in 1973[13]. The

work of Iwai in 2000 [1] takes the adaptive automata of Neto [14, 15] further by

applying adaptive automata to context-sensitive grammars.

2 Adaptive Grammars

According to Iwai [1], adaptive grammar is a generative formalism capable of

representing context-sensitive languages. What distinguishes this grammar from the

conventional ones is its ability to self-modify as the sentences of language are derived.

The modifications take place during the generation of the sentence, when applying

production rules to which are associated adaptive actions, whose execution causes

changes in the set of production rules and, possibly, in the set of non-terminal symbols.

A sentence ω belonging to the language represented by an adaptive grammar is

generated from an original grammar G0 and from a succession of intermediate G1 ... Gn-

1 grammars, created whenever some adaptive action is activated during sentence

generation, and finishes using Gn as the final grammar.

The author defines an adaptive grammar G as being a ordered triple (G0, T, R0),

where: T is a finite, possibly empty, set of adaptive functions; G0
 = (VN

0, VT, VC, PL
0,

PD
0, S) is an initial grammar, where VN

 0 is a finite non-empty set of non-terminal

symbols, VT is a finite non-empty set of terminal symbols, VN
0VT = VC is a finite

set of context symbols.

V0= VN
0 VT VC, where VN

0VT and VC are disjoint sets two to two, S VN
0
 Is

the initial symbol of grammar, PL
0

 is the set of rules of production applicable to

situations free of context and PD
0 is the set of rules of production applicable to situations

dependent on context. The production rules consist of expressions with the following

formats, i being an indicator of the number of adaptive changes already applied to the

initial grammar:

Type1 or belonging to the set PL
i, where i is an integer, greater than or equal to zero:

N → { A } α, where α ∈ (VT ∪ VN)* , N ∈ VN and A is an optional adaptive action

associated with the production rule.

Type 2 or belonging to the set PL
i, where i is an integer, greater than or equal to zero:

N → where  is a meta-symbol indicating the empty set.

This production indicates that although the non-terminal symbol N is defined, an

empty set is derived, that is, there is no intended substitution for that non-terminal. This

means that if this rule is applied in some derivation, the grammar will not generate any

sentence. This rule is used for the case where there are rules that refer to non-terminals

that should be dynamically defined, as a result of the application of some

adaptive action.

Type 3 or belonging to the set PD
 i, where i is an integer, greater than or equal to zero:

αN ← { A } βΜ where α ∈ VC ∪ {ε} e β ∈ VC, or αN→ { A } βΜ, where α ∈ VC,

β∈ VT ∪{ε}, N and M ∈ VN
i, and A being an optional adaptive action. The first

production has the arrow in reverse, indicating that β is being injected into the input

chain. This production exchanges αN by βΜ, inserting context information. The second

output has the arrow in the right direction, but has on its left side a context symbol

followed by a non-terminal symbol, which indicates that αN is being replaced by βΜ

79

Proposal for Modeling Brazilian Portuguese with Adaptive Grammars

Research in Computing Science 141, 2017ISSN 1870-4069

and generating β in the output chain. R0 is a relationship of type (r, A), where r ∈ (PL
0

∪ PD
 0) and A ∈ T, R0⊆ P0 × (T ∪{ε}). For each production rule r there is a relation

R0 that associates it to an adaptive action A.

A production rule to which an associated adaptive action is associated is called the

adaptive production rule. The expression defining a production rule of type 1 of the

adaptive grammar is of the context-free type less than the adaptive action, which,

together with the productions in PD
 0, accounts for the representation of the context

dependencies in this grammar.

According to Neto [14], adaptive actions are called adaptive functions. Iwai [1] uses

the concept, originally designed for automata, and modifies it to be used in adaptive

production rules. The notation proposed by the author is as follows:

Action name (list of formal parameters)

{ list of variables, list of generators:

optional adaptive action

elementary action 1,

elementary action 2,

.....

elementary action n,

optional adaptive action.

}

In the adaptive function header there is the name of the adaptive function, followed

by a list of formal parameters, separated by commas, in parentheses. When the adaptive

function is called, this list will be filled with the corresponding values of the arguments

passed in the particular function call, which values will be preserved intact throughout

the function execution. The body of the adaptive function is represented by braces. It

consists of a list of variables (separated by commas), a list of generators (separated by

commas), followed by colon.

Next, the adaptive function may optionally contain the call of some adaptive

function. This adaptive action is processed prior to the execution of the adaptive

function being declared. Then, several elementary adaptive actions are listed, and in the

end, there may be another adaptive function call to be processed after the execution of

all the elementary actions of the adaptive function being declared.

Variables are symbols that give names to elements whose values are unknown at

the time of the call of the adaptive function and which must be filled during the

execution of the adaptive function as a result of adaptive query actions.

Generators are elements similar to variables, but are automatically filled at the

beginning of the execution of the adaptive function, with values that do not repeat,

preserving this value during the whole execution of the function.

According to the author's proposal, there are three types of elementary adaptive

actions: query, addition and removal, which can be represented as follows, respectively:

? [N → { optional_adaptive_action } M],

+ [N → { optional_adaptive_action } M],

- [N → { optional_adaptive_action } M],

80

Djalma Padovani, João José Neto

Research in Computing Science 141, 2017 ISSN 1870-4069

where N∈ VN i, M∈ Vi* , for some i ∈ I, where i represents the step of the evolution of

grammar, and for some adaptive action, if it exists.

Elementary Consultation

This action verifies the existence of some production rule that presents the indicated

format in the current set of productions of the grammar. When one or more symbols of

the expression are represented by some variable, this action will fill those variables with

the corresponding values that are found. Consequently, variables are filled as a result

of performing the basic query actions. It should be noted that the variables, initially

indefinite, are filled at most only once during the execution of an adaptive function.

Elementary Addition Action

This elementary action includes in the grammar a new production rule with the format

indicated, being able to use variables and also generators for the definition of symbols

that did not exist until the moment of its application. The addition of an existing rule is

innocuous. The addition of rules that refer to undefined variables is also innocuous.

Elementary Removal Action

The execution of this elementary action is done in two steps. The first is to check the

existence of the rule if you want to exclude with the consequent completion of the

variables. If so, the removal is done, otherwise nothing is removed. It should be noted

that, since there is more than one elementary adaptive action to be performed regardless

of the order in which they were declared, the query rules take precedence. Between

removals and additions, removals take precedence. The additions are always performed

last. Elementary actions that refer to undefined variables will not be performed.

Adaptive Actions for Grammar Change

In the execution phase, adaptive actions are responsible for grammatical changes. When

an adaptive action is performed, the grammar evolves, changing its non-terminal

symbol sets and production rules.

Example of an adaptive function call:

A (A1, B1, C1) = {A2*, B2*, C2*:

+ [A1 → {A (A2, B2, C2) } aA2]

+ [A1 → {B (B2, C2)} ε]

+ [B → b B2]

+ [C → c C2]}.

Derivation Sequence

The generation of the sentences of a language represented by an adaptive grammar

occurs through successive substitutions of the non-terminal symbols, according to the

rules of grammar, starting from an initial symbol S. The primordial difference of this

procedure is the presence of the adaptive actions that, when activated, alter the grammar

that was being used until the moment the adaptive rule was applied. Another important

difference with respect to conventional grammars refers to contextual productions,

which can be used for context symbols in the derivation, so that the substitutions that

81

Proposal for Modeling Brazilian Portuguese with Adaptive Grammars

Research in Computing Science 141, 2017ISSN 1870-4069

depend on them are performed only when said context symbol is explicitly present in

the Sentential form when substitution of the non-terminal affected by it.

Normal form of adaptive grammars

The author also presents the concept of normal form of adaptive grammars and a

standardization technique. Considering G = (G0, T, R0) an adaptive grammar, where G0

= (VN
0, VT, VC, PL

0, PD
0, S) the initial grammar that implements G, T is the set of

adaptive actions, and R0 the set of relationships that associates productions rules with

adaptive actions.

The normalized grammar GN = (G0’, T’, R0’) is defined by G0’= (VN
0’, VT’, VC’,

PL
0’, PD

0’, S), the new grammar that implements GN, T’, its set of adaptive actions, and

R0’, the set of relationships that associates their production rules with the adaptive

actions. If the grammar root S is recursive, a production S’ → S is created, ensuring

that all grammar roots are not self-recursive. Let's take a production rule with the

following form:

A→ {A} a1 a2....an..

a) if n = 0, then A→ ε, and the corresponding normal form is A→ {A} ε,

b) if n > 0, then the corresponding normal form is:

1. A→ {A’} a1 A1,

2. α1 A1 → a2 A2

 :

 n. αn-1 An-1 → an An

 n+1. αn An ←αAn+1

 n+2. An+1 → ε

 with α ∈ VC, αi ∈ VC if ai ∈ VN, and αi = ε if αi ∈ VT.

A’ is the normalized adaptive action equivalent to A. If A = ε, then A’= ε. If a1 ∈

VN, then the first rule of the set of normalized rules is changed to:

0. A→ {A’} A0.

And the rule 1 becomes:

1. A0 → a1 A1

If A is the initial symbol of the grammar, then there is not a rule n+1, because it is

not necessary to insert a context symbol for the initial one. The latest normalized rules

are now as follows:

n. αn-1 An-1 → an An,

n+1. αn An → ε.

Table 1. Example of Celso Luft’s phrasal patterns.

1 SS1 Vlig SS2

2 SS Vlig Sadj

3 SS Vlig Sadv| Sadj

82

Djalma Padovani, João José Neto

Research in Computing Science 141, 2017 ISSN 1870-4069

The normalization of productions of type X→ ({A1} A1 | {A2} A2) is done

as follows:

X → {A1’} A1X1 α1X1 → X2,

X2 → {A2’} A2X3 α2X3 → X,

X2 → ε.

with αi ∈ VC if Ai ∈ VN, and αi = ε if Ai ∈ VT.

Ai’ is the normalized adaptive action equivalent to Ai. If Ai = ε, then Ai’= ε. If each

Ai is an expression (VN ∪ VT) * then apply the rules a and b before mentioned. The

normalization of productions of the type X→ ({A1} A1 | {A2} A2 |... |{An} An) is

done as follows:

X → { A1’} A1 X1 α1X1 → X2,

X → { A2’} A2 X1 α2X1 → X2,

: :

X → {An’} AnX1 αnX1 → X2,

X2 → ε.
with αi ∈ VC if Ai ∈ VN, and αi = ε if Ai ∈ VT.

Ai’ is the normalized adaptive action equivalent to Ai. If Ai = ε, then Ai’= ε. If each

Ai is an expression (VN ∪ VT) * then apply the rules a and b before mentioned. The

normalization of adaptive actions is done in a similar way to the previously presented

production rules. But is these case, intermediary non-terminals are variables that will

be filled as arguments are passed. For example, an adaptive action that contains

elementary actions of consultation, removal and addition, and represented as follows:

A (x, y) = { ? [x→ a b c]

 - [y→ d e]

 + [z → f] }.

In the normalized form becomes:

B (x, y) = { u1, u2, u3, u4, v1, v2, v3, t1, t2:

? [x → a u1], ?[u4 → ε], -[v3 → ε],

? [u1 → b u2], -[y→ d v1], +[z → f t1],

? [u2 → c u3], -[v1 → e v2], +[t1← z’ t2],

? [u3 ← x’ u4], -[v2 ← y’ v3], +[t2 → ε] }.

Context productions of the forms A ←αB, αA←βB, αA→B , and αA→ bB do not

change, since they are defined only with the right side of the production, presenting at

most only two elements.

3 Modern Brazilian Grammar of Celso Luft

The Modern Brazilian Grammar of Celso Luft [16] categorizes in a clear and precise

way the different types of sentences of Portuguese Language, differing from the other

grammars, which prioritize the description of the language to the detriment of the

structural analysis of the same. Luft says that sentences are shaped by phrasal patterns,

composed of elements called phrases. An example is given in Table 1.

83

Proposal for Modeling Brazilian Portuguese with Adaptive Grammars

Research in Computing Science 141, 2017ISSN 1870-4069

Phrasal pattern is any immediate constituent of a sentence, and can play the role of

subject, complement (direct and indirect object), predicative and adjunct adverbial. It

is composed of one or more words, one being classified as a nucleus and the other as

dependent. Dependent words may be located to the left or right of the nucleus. Luft

uses the following names and abbreviations:

1. SS: Noun phrase - nucleus is a noun,

2. SV: Verb phrase - nucleus is a verb,

3. Sadj: Adjective phrase - nucleus is an adjective,

4. Sadv: Adverbial phrase - nucleus is an adverb,

5. SP: Prepositional phrase - formed by a preposition (Prep) plus one SS,

6. Vlig: linking verb,

7. Vi: intransitive verb,

8. Vtd: direct transitive verb,

9. Vti: indirect transitive verb,

10. Vtdi: direct and indirect transitive verb,

11. Vtpred: transitive verb predicative.

Luft also presents a comprehensive formula for sentence patterns:

[SS] V [SS] [SS | Sadj | Sadv | SP] [SP] [SP]

The symbol V represents all types of verbs: Vlig, Vi, Vtd, Vti, Vtdi, and Vtpred.

Luft's formula allows us to generate any type of sentence pattern by simply using the

productions defined by the grammar.

4 Introduction of Adaptive Mechanisms in Celso Luft's Grammar

The introduction of adaptive mechanisms in Celso Luft's Grammar has as main

objective the use of a single model of representation that is able to generate sentences

free and dependent on context.

Specifically, the adaptive characteristic of the Iwai Grammar will be used to generate

the productions corresponding to the Luft sentence patterns in function of the lexical

characteristics of the analyzed text. In the case of simple periods, verbs will be used to

determine the pattern of previous and subsequent terms.

In the case of compound periods, conjunctions and relative pronouns will be used as

defining elements of sentence break patterns. Therefore, the context dependence of this

work is limited to the use of semantics to define syntactic sentence patterns and their

respective rules of production. The work was divided into the following steps:

1. Consolidation of Celso Luft's Sentence Patterns.

2. Standardization of Production Rules.

3. Specification of Adaptive Grammar.

84

Djalma Padovani, João José Neto

Research in Computing Science 141, 2017 ISSN 1870-4069

4. Specification of Grammar Changes.

5. Specification of Semantics.

The first two steps are to prepare the Luft’s Grammar so that it can be processed

computationally. The third step corresponds to the presentation of the adaptive model

itself. The fourth step presents the notation used to make changes in the grammar rules

and the last step exemplifies the use of adaptive grammar in semantic analysis.

 Consolidation of Celso Luft's Sentence Patterns

This proposal begins with the consolidation of the standards presented by Luft, unifying

the types of patterns, in order to simplify computational processing. For example,

Table 2. Consolidated sentence patterns of Celso Luft’s grammar.

Nominal Personal Patterns

SS Vlig SS

SS Vlig Sadj

SS Vlig Sadv

SS Vlig SP

Verbal Personal Patterns

SS Vtd SS

SS Vti SP

SS Vti Sadv

SS Vti SP SP

SS Vtdi SS SP

SS Vtdi SS Sadv

SS Vtdi SS SP SP

SS Vi

Verbal Nominal Personal Patterns

SS Vtpred SS SS

SS Vtpred SS Sadj

SS Vtpred SS SP

Table 2. Consolidated sentence patterns of Celso Luft’s grammar – Continuation.

Verbal Nominal Personal Patterns

 SS Vtpred SS Sadv

SS Vtpred SS

SS Vtpred Sadj

SS Vtpred SP

Impersonal Nominal Patterns

 Vlig SS

 Vlig Sadj

 Vlig Sadv

 Vlig SP

Impersonal Verbal Patterns

 Vtd SS

 Vti SP

 Vi

85

Proposal for Modeling Brazilian Portuguese with Adaptive Grammars

Research in Computing Science 141, 2017ISSN 1870-4069

instead of using SS1 and SS2 to indicate noun phrases, only a single SS symbol will be

used, which can be repeated according to the sentence pattern to which it belongs. The

consolidated patterns are presented in Table 2.

 Standardization of Production Rules

The production rules of the Celso Luft’s Grammar have to be standardized to be used

computationally. This work uses a model proposed Neto [17] with some modifications

to refine the phrase structures. The productions are as follows:

S  [con] [PrRel] [SS] SV pont [S]

– S: Sentence

– PrRel: Relative pronoun

– con: Conjunction or relative pronoun,

– SS: Noun phrase,

– SV: Verb frase,

– pont: punctuation.

SS [Sadj] SS [Sadj | SP | S] | S

– SS: Noun frase,

– Sadv: Adverbial frase,

– Sadj: Adjective frase,

– SP: Prepositional frase,

– S: Sentence.

SS (([num | PrA] Sc) | Sp | PrPes)

– SS: Noun frase,

– num: numeral,

– PrA: Adjective pronoun,

– Sc: Common noun,

– Sp: Proper noun,

– PrPes: Personal Pronoun.

SV [Neg] [Aux | PreV] V [SS | Sadj | Sadv | SP] | ((SS SP) | (SS Sadj) | (SP SP) |

 (SS SS) | (SS Sadv) | (SS SP SP))

– Neg: negation particle,

– Aux: Auxiliar passive voice particle,

86

Djalma Padovani, João José Neto

Research in Computing Science 141, 2017 ISSN 1870-4069

– PreV: Pre-verbal,

– V: Vlig|Vtda|Vtdna|Vtdi, |Vtpred |Vti

– SS: Noun phrase,

– Sadv: Adverbial phrase,

– Sadj: Adjective phrase,

– SV: Verb frase,

– SP: Preposicional frase,

– SS: Noun phrase.

V (Vlig | Vtda | Vtdna | Vtdi | Vtpred |Vti |Vi)

– V: Verb,

– Vlig: Linking verb,

– Vtda: Transitive verb convertible to passive voice,

– Vtdna: direct transitive verb not convertible to passive voice,

– Vtdi: Direct and indirect transitive verb,

– Vtpred: Predicative verb,

– Vti: Indirect transitive verb,

– Vi: Intransitive verb.

SP Prep (SS | Sadj) | S

– SP: Preposicional phrase,

– Prep: preposition,

– SS: Noun phrase,

– Sadj: Adjective frase,

– S: Sentence.

Sadj Sadj [SP] [S] | S

– Sadj: Sintagma adjetivo,

– SP: Sintagma preposicional,

– S: Sentença.

Sadj [Adv] Adj [S] | S

– Sadj: Adjective frase,

– Adv: Adverb,

87

Proposal for Modeling Brazilian Portuguese with Adaptive Grammars

Research in Computing Science 141, 2017ISSN 1870-4069

– Adj: Adjecive,

– S: Sentence.

Sadv Sadv [SP] [S] | S

– Sadv: Adverbial frase,

– SP: Preposicional frase,

– S: Sentence.

Sadv [Adv] Adv [S] | S

– Sadv: Adverbial frase,

– Adv: Adverb,

– S: Sentence.

PrA [PrA] (Ind | ArtDef | ArtInd| Dem| Pos)

– PrA: Adjective pronoun,

– Ind: Indefinite pronoun,

– ArtDef: definite article,

– ArtInd: indefinite article,

– Dem: Indefinite demonstrative pronoun.

 Specification of the Adaptive Grammar

The grammar is specified according to the production rules defined in item 4.2 and

based on the Portuguese Language lexicon, being as follows:

G = (G0, T, R0), where:

G0
 = (VN

0, VT, VC, PL
0, PD

0
 , S),

VN
0

 = { S, con, SS, SV, SS, Sadj, SP,num, PrA, Sc, Sp, PrPes, Neg, Aux,

PreV,V, Vlig ,Vtda,Vtdna , Vtdi, Vtpred ,Vti ,Vi, Sadv, Prep, Ind, ArtDef, ArtInd,

Dem, Pos, PrRel, Adv, Adj, pont },

VT = {{lexicon},{,}, ; , . ,:,!,?,1, 2, 3, 4, 5, 6, 7,8, 9, 0},

PL
0
 = { S → [con] [PrRel] [SS] SV pont [S]

 SS → [Sadj] SS [Sadj | SP] [S] | S

 SS → (([num | PrA] Sc) | Sp | PrPes)

SV→ [Neg] [Aux | PreV] V [SS | Sadj | Sadv | SP] | ((SS SP) | (SS Sadj) |

(SP SP) | (SS SS) | (SS Sadv) | (SS SP SP))

V → (Vlig | Vtda | Vtdna | Vtdi | Vtpred |Vti |Vi)

SP → Prep (SS | Sadj)

Sadj → Sadj [SP] [S] | S

Sadj → [Adv] Adj [S]

88

Djalma Padovani, João José Neto

Research in Computing Science 141, 2017 ISSN 1870-4069

Sadv → Sadv [SP] [S] | S

Sadv → [Adv] Adv [S]

PrA → [PrA] (Ind | ArtDef | ArtInd| Dem| Pos)

con → (aditiva | adversativa | alternativa | conclusiva| explicativa |

 integrante | causal | comparativa | concessiva | condicional |

 conformativa | consecutiva | final | proporcional | temporal)1

num→ (0 |1 |2 | 3 |4 |5 |6 |7 |8 |9)|

 (cardinal| ordinal| multiplicativo| fracionario)2

pont → (,| ; | . |: |! |?)

},

VC = 

PD0 = 

With the normalization of the grammar G, the new grammar G’= (G0’, T’, R0’) is

defined as follows:

G0’ = (VN
0’, VT’, VC’, PL

0’, PD
0’, S),

VN
0’ = VN

0, VT’ = VT, VC’= {δ, }.

PL
0’PD

0’ formed by the productions obtained with the normalization.

The normalization of the production S → [con|PrRel][SS] SV pont [S] generates:

1.0 SV → SV pont 5.0 S → SS S1

2.0 S → SV 6.0 S1 → SV S

3.0 S → SV S 7.0 S → con S

4.0 S → SS SV 8.0 S → PrRel S

In this case, prior to the application of the Iwai standardization rules, is added the

rule SV → SV pont, that incorporates the punctuation to the verbal phrase, since in the

Grammar of Luft there is no production rules involving the punctuation.

The normalization of the production SS → [Sadj] SS [Sadj | SP | S] | S, generates:

9.0 SS → SS 13.0 SS → Sadj SS 17.0 SS2 → SS SP

10.0 SS → SS Sadj 14.0 SS → Sadj SS1 18.0 SS→ Sadj SS3

11.0 SS → SS SP 15.0 SS1 → SS Sadj 19.0 SS3 → SS S

12.0 SS→ SS S 16.0 SS → Sadj SS2 20.0 SS → S

The normalization of the production SS → (([num | PrA] Sc) | Sp | PrPes), generates:

21.0 SS → Sc

22.0 SS → Sp

23.0 SS → PrPes

24.0 SS→ num Sc

25.0 SS → PrA Sc

The normalization of the production SV→ [Neg] [Aux | PreV] V [SS | Sadj | Sadv |

SP] | ((SS SP) | (SS Sadj) | (SP SP) | (SS SS) | (SS Sadv) | (SS SP SP)), generates:

1 set of conjunction types of Portuguese Language
2 set of numerical types of Portuguese Language

89

Proposal for Modeling Brazilian Portuguese with Adaptive Grammars

Research in Computing Science 141, 2017ISSN 1870-4069

Simple Complements:

26.0 SV → V 40.0 SV → Aux V 53.0 SV → Neg SV7

27.0 SV → V SS 41.0 SV → Aux SV1 54.0 SV7 → Aux SV3

28.0 SV → V Sadj 42.0 SV → Aux SV2 55.0 SV → Neg

29.0 SV → V Sadv 43.0 SV → Aux SV3 56.0 SV8 → Aux SV4

30.0 SV → V SP 44.0 SV → Aux SV4 57.0 SV → Neg SV9

31.0 SV → Neg V 45.0 SV → PreV V 58.0 SV9 → PreV V

32.0 SV → Neg SV1 46.0 SV → PreV SV1 59.0 SV → Neg SV10

33.0 SV1 → V SS 47.0 SV → PreV SV2 60.0 SV10 → PreV SV1

34.0 SV → Neg SV2 48.0 SV → PreV SV3 61.0 SV → Neg SV11

35.0 SV2 → V Sadj 49.0 SV → PreV SV4 62.0 SV11 → PreV SV2

36.0 SV → Neg SV3 50.0 SV → Neg SV5 63.0 SV → Neg SV12

37.0 SV3 → V Sadv 51.0 SV5 → Aux V 64.0 SV12 → PreV SV3

38.0 SV → Neg SV4 51.0 SV → Neg SV6 65.0 SV → Neg SV13

39.0 SV4 → V SP 52.0 SV6 → Aux SV1 66.0 SV13 → PreV SV4

Compound Complements:

67.0 SV → V (SS SP) 85.0 SV → Aux SV14 103.0 SV → Neg SV23

68.0 SV → V (SS Sadj) 86.0 SV → Aux SV15 104.0 SV23 → Aux SV17

69.0 SV → V (SP SP) 87.0 SV → Aux SV16 105.0 SV → Neg SV24

70.0 SV → V (SS SS) 88.0 SV → Aux SV17 106.0 SV24 → Aux SV18

71.0 SV → V (SS Sadv) 89.0 SV → Aux SV18 107.0 SV → Neg SV25

72.0 SV → V (SS SP SP) 90.0 SV → Aux SV19 108.0 SV25 → Aux SV19

73.0 SV → Neg SV14 91.0 SV → PreV SV14 109.0 SV → Neg SV26

74.0 SV14 → V (SS SP) 92.0 SV → PreV SV15 110.0 SV26 → PreV SV14

75.0 SV → Neg SV15 93.0 SV → PreV SV16 111.0 SV → Neg SV27

76.0 SV15 → V (SS Sadj) 94.0 SV → PreV SV17 112.0 SV27 → PreV SV15

77.0 SV → Neg SV16 95.0 SV → PreV SV18 113.0 SV → Neg SV28

78.0 SV16 → V (SP SP) 96.0 SV → PreV SV19 114.0 SV28 → PreV SV16

79.0 SV → Neg SV17 97.0 SV → Neg SV20 115.0 SV → Neg SV29

80.0 SV17 → V (SS SS) 98.0 SV20 → Aux SV14 116.0 SV29 → PreV SV17

81.0 SV → Neg SV18 99.0 SV → Neg SV21 117.0 SV → Neg SV30

82.0 SV18 → V (SS Sadv) 100.0 SV21 → Aux SV15 118.0 SV30 → PreV SV18

83.0 SV → Neg SV19 101.0 SV → Neg SV22 119.0 SV → Neg SV31

84.0 SV19 → V (SS SP SP) 102.0 SV22 → Aux SV16 120.0 SV31 → PreV SV19

The normalization of the production SP → Prep (SS | Sadj), generates:

121.0 SP → Prep SS

122.0 SP → Prep Sadj

The normalization of the production Sadj → Sadj [SP] [S] | S, generates:

123.0 Sadj → Sadj

124.0 Sadj → Sadj SP

125.0 Sadj → Sadj S

126.0 Sadj → Sadj Sadj1

127.0 Sadj1 → SP S

128.0 Sadj → S

90

Djalma Padovani, João José Neto

Research in Computing Science 141, 2017 ISSN 1870-4069

The normalization of the production Sadj → [Adv] Adj [S] , generates:

129.0 Sadj → Adj

130.0 Sadj → Adv Adj

131.0 Sadj → Adv Sadj2

132.0 Sadj2 → Adj S

133.0 Sadj → Adj S

The normalization of the production Sadv → Sadv [SP] [S] | S, generates:

134.0 Sadv → Sadv

135.0 Sadv → Sadv SP

136.0 Sadv → Sadv Sadv1

137.0 Sadv1 → SP S

138.0 Sadv → Sadv S

139.0 Sadv → S

The normalization of the production Sadv → [Adv] Adv [S], generates:

140.0 Sadv → Adv

141.0 Sadv → Adv Adv

142.0 Sadv → Adv Sadv2

143.0 Sadv2 → Adv S

The normalization of the production V → ({A(t)}Vlig | {A(t)}Vtda | {A(t)}Vtdna

| {A(t)}Vtdi | {A(t)}Vtpred |{A(t)}Vti|{A(t)}Vi), generates:

44.0 V →{A(Vlig)}V 148.0 V → {A(Vtpred)}V

145.0 V → {A(Vtda)}V 149.0 V →{A(Vti)}V

146.0 V → {A(Vtdna)}V 150.0 V → {A(Vi)}V

147.0 V → {A(Vtdi)}V

The normalization of the production PrA → [PrA] (Ind | ArtDef | ArtInd| Dem|

Pos), generates:

151.0 PrA → Ind 156.0 PrA → PrA Ind

152.0 PrA → ArtDef 157.0 PrA → PrA ArtDef

153.0 PrA → ArtInd 158.0 PrA → PrA ArtInd

154.0 PrA → Dem 159.0 PrA → PrA Dem

155.0 PrA → Pos 160.0 PrA → PrA Pos

The normalization of the production con → (aditiva | adversativa | alternativa |

conclusiva| explicativa|integrante | causal | comparativa | concessiva | condicional |

conformativa | consecutiva | final | proporcional | temporal), generates:

 con →{B(cAditiva)}con 168.0 con → {B(sConcessiva)} con

162.0 con → {B(cAdversativa)} con 169.0 con → {B(sCondicional)} con

163.0 con →{B(cAalternativa)} con 170.0 con → {B(sConformativa)} con

164.0 con → {B(cExplicativa)} con 171.0 con → {B(sConsecutiva)} con

165.0 con → {B(sIntegrante)} con 172.0 con → {B(sFinal)} con

166.0 con → {B(sCausal)} con 173.0 con → {B(sProporcional)} con

167.0 con → {B(sComparativa)} con 174.0 con → {B(sTemporal)} con

91

Proposal for Modeling Brazilian Portuguese with Adaptive Grammars

Research in Computing Science 141, 2017ISSN 1870-4069

The normalization of the production num→ (0 |1 |2 | 3 |4 |5 |6 |7 |8 |9)| (cardinal |

ordinal | multiplicativo | fracionario), generates:

175.0 num → 0 182.0 num → 5

176.0 num → 1 183.0 num → 6

177.0 num → 2 184.0 num → 7

178.0 num → 3 185.0 num → 8

179.0 num → 4 186.0 num → 9

180.0 num → cardinal 187.0 num → ordinal

181.0 num → multiplicativo 188.0 num → fracionario

The normalization of the production pont → (,| ; | . |: |! |?), generates:

189.0 pont → , 192.0 pont → :

190.0 pont → ; 193.0 pont → !

191.0 pont → . 194.0 pont → ?

The normalization of the production PrRel → (substantivo | adjetivo|

adverbio), generates:

195.0 PrRel → {C(PrRelSubs)} PrRel

196.0 PrRel → {C(PrRelAdj)} PrRel

197.0 PrRel → {C(PrRelAdv)} PrRel

The other non-terminals generate production rules based on the classification of the

Portuguese Language lexicon.

 Specification of Grammar Changes

Adaptive actions are used to modify the rules of production according to the context

defined by the type of verb found in the text and by the presence of conjunctions or

relative pronouns. However, for these modifications to be made, it is necessary to

exclude and include a very large number of production rules. In view of this need, Iwai's

notation has been extended with the instruction R, which means replace, i.e. exchange

of a set of rules from the previous grammar by a new set of rules.

The syntax of the R statement is as follows:

R: <G
n> <PI-F > : < Gn+1 > P’,

where:

R: replace

G
n

: Grammar prior to the update

PI-F: Production rules for updating, where I = Interval start and F = interval end. It is

allowed to add more than one rule set by using the comma for separating

G
n+1

: Grammar posterior to the update

P’: new production rule

 : Symbol indicating that the rules set out in PI-F will be removed

The following examples show the use of R instruction in an adaptive action A.

92

Djalma Padovani, João José Neto

Research in Computing Science 141, 2017 ISSN 1870-4069

T = { A (t=Vlig) = F (t) = { + [R: Gn
 P26-66: Gn+1V ← V]

 + [G n+1 V → Vlig]

+[R: G n
 P 67-120: G

n+1
 ],

 T = { B (p = cAditiva) = B (p) = { + [R: G n P7: G n+1 con ← δcon]

 + [G n+1 δcon → cAditiva]

 + [R: G n P7: G n+1 ].

 Semantics

The formalism presented by Iwai provides support to include additional features to

solve problems where context is important for selection of production rules. For

example, the notation allows you to check whether the analyzed sentence is correct or

to resolve possible ambiguities if you have information about the type of verb, time,

mode and person of the analyzed verb. In the example below, the adaptive action A

uses as input parameters the type identification of the verb, mode and person to define

the adaptive functions:

T = { A (verb=Vlig, time = Present, mode = Singular, person = First) =

F (verb, time, mode, person) = { + [R: Gn
 Pi-f: Gn+1V ← V

 + [G
n+1

 V → Vlig, Present, Singular, First]

 + [R: G n
 P i-f: G

n+1
 ] }.

Adaptive formalism was used to add contextual features to grammar, which would

not be possible using only context-free grammar. Analogously, it is possible to include

rules for analysis of nominal agreement or any other type of semantic content, without

the need to use any element other than formalism. Adaptive grammars can also be used

to represent the use of probabilistic information in the selection of production rules.

Such a technique is used when there is more than one applicable production rule and

there is insufficient syntactic and semantic information to disambiguate them.

In this case, it is possible to use the probability of occurrence of the rules as a choice

factor and the formalism of Iwai can be used to represent this type of contextual

information. In the example below, the adaptive action A uses as input parameter

probability of occurrence of the evaluated production rules and an indication to use the

rule of maximum probability:

SVprob → V SP 10%,

SVprob → V (SS SP) 90%,

T = { A (t=SV, u = prob, v=max) =

F (SV, prob, max) = { + [R: Gn
 Pinicio-fim: Gn+1SV ← SVprob]

 + [G
 n+1 SVprob → SVmax]

 ? [G n+1
 SVmax]

 + [G
 n+1 SVmax → V (SS SP)]

 + [R: G n
 P inicio-fim: G n+1

 ]. }.

93

Proposal for Modeling Brazilian Portuguese with Adaptive Grammars

Research in Computing Science 141, 2017ISSN 1870-4069

5 Conclusions

Adaptivity extends the capabilities of conventional grammars, providing syntactic and

semantic representation power in a single device. The formality presented by Margarete

Iwai structures this knowledge and allows it to be applied to natural language

grammars. This work presented a method for modeling natural languages using

Adaptive Grammars and illustrates the proposal with an application to Brazilian

Portuguese, based on Modern Brazilian Grammar of Celso Luft. Luft's production

patterns were formatted in the Iwai model and adaptive actions were created for the

generation of coordinated and subordinate sentences, with validation of Luft's proposed

sentence patterns as a function of the context of the analysis.

Due to the amount of production rules used by the Luft grammar, a new adaptive

action, the R instruction, was introduced, replacing a set of rules from the previous

grammar with a new set of rules, allowing a large set of production rules to be updated

with a single instruction. The semantics representation was exemplified with an

ambiguity problem, in which context was important to choose the most adequate

production. Finally, the robustness of the model was proven with an example in which

it was included probabilistic information in the selection of production rules.

6 Future Works

The intention is to continue this research through the development of several aspects

not considered in the scope of this work. An example is the syntactic patterns analyzed

before the verb of the sentence, which can be changed the moment the type of verb is

identified. Another example is the verification of the possibility of inversion of the

sentence patterns, also depending on the type of the verb. Finally, it is intended to

evaluate the application of nominal and verbal regency criteria to verify the adequacy

of the sentence analyzed to the cult pattern of the Portuguese Language.

References

1. Iwai, M. K.: A gramatical formulation for context-dependent languages. Escola Politécnica

da Universidade de São Paulo. Tese de Doutorado (2000)

2. Neto, J. J., Moraes, M. D.: Using adaptive formalisms to describe context-dependencies in

natural language. In: International Workshop on Computational Processing of the Portuguese

Language, Springer, vol. 2721, pp. 94–97 (2003) doi: 10.1007/3-540-45011-4_14

3. Rich, E., Knight, K., Shivashankar, B. N.: Artificial intelligence (chapter natural language

processing), 3rd Edition, Tata McGraw-Hill, (2009)

4. Vieira, R., Lima, V. L. S.: Linguística computacional: princípios e aplicações. IX Escola de

Informática da SBC–Sul (2001)

5. Fuchs, C., Le-Goffic, P.: Initiation aux problèmes des linguistiques contemporaines.

Hachette Université (1975)

6. Nunes, M. D. G. V., Pardo, T. A.: Introdução ao Processamento das Línguas Naturais. Notas

didáticas do ICMC, Universidade São Paulo, vol. 180 (1999)

7. Shutt, J. N.: What is an Adaptive Grammar? (2001)

8. Christiansen, H.: A survey of adaptable grammars. ACM SIGPLAN Notices, vol. 25, no. 11,

pp. 35–44 (1990)

94

Djalma Padovani, João José Neto

Research in Computing Science 141, 2017 ISSN 1870-4069

9. Shutt, J. N.: Recursive adaptable grammars. Master’s Thesis, Worcester Polytechnic

Institute (1993)

10. Jackson, Q. T.: Adapting to babel: adaptivity and context-sensitivity in parsing. Ibis

Publications (2006)

11. Di-Forino, A. C.: Some remarks on the syntax of symbolic programming languages.

Communications of the ACM, vol. 6, no. 8, pp. 456–460 (1963)

12. Wegbreit, B.: Studies in extensible programming languages, ESD-TR-70-297, Harvard

University Cambridge, Massachusetts (1970)

13. Hanford, K. V., Jones, C. B.: Dynamic syntax: A concept for the definition of the syntax of

programming languages. Annual Review in Automatic Programming, Pergamon Press, pp.

115–142 (1973)

14. Neto, J. J.: Adaptive automata for context-sensitive languages. ACM SIGPLAN Notices, vol.

29, no. 9, pp. 115–124 (1994)

15. Neto, J. J.: Adaptive rule-driven devices - general formulation and case study. Lecture Notes

in Computer Science. In: Implementation and Application of Automata 6th International

Conference, CIAA’01, Springer, vol. 2494, pp. 234–250 (2001)

16. Luft, C.: Moderna gramática brasileira. 2ª. Edição Revista e Atualizada, Editora

Globo (2002)

17. Neto, J. J.: Adaptive handling of some linguistic phenomena. Available at:

https://sites.google.com/site/2015pcs5004/material-para-download

95

Proposal for Modeling Brazilian Portuguese with Adaptive Grammars

Research in Computing Science 141, 2017ISSN 1870-4069

